08.40 - 09.15

Biomachining of the future – Which technologies for the benefit of the patient?

- Major transformation of BioManufacturing and emerging new and game-changing technologies, such as continuous E2E manufacturing, disposable equipment and digital plants
- Which new technologies are just “passing fads” and which game-changing technologies will bring real benefit and added value to the patient?
- Technologies are sometimes incompatible or contradictory, e.g. disposable technology, requiring more manual handling, and plant digitalisation, aiming at self-driving operations
- Is there a “one-size fits all” biomanufacturing plant of the future? Should the biotech industry work towards a common technology platform similar to that developed by the semi-conductor industry a few decades ago?

09.15 - 09.50

Integrating next-gen processes, technologies and operations to modernise biomanufacturing

- The growth of biologic therapeutics demands innovations in biomanufacturing to supply drug products in a more reliable and faster manner
- Modernised approach to biomanufacturing with Next-Gen Manufacturing (NGM) integrations
- Combing the NGM mode with modular, expandable facility design and automation

10.40 - 11.15

Validation of next gen depth filter technology in a commercial downstream process

- Current situation
- Proposed situation
- Small scale development
- Upscaling and Large scale validation
- Conclusion and take home messages

11.20 - 11.55

Disposable technology applications to support an evolving product pipeline

- Introduction of high potency Bispecific to standard product portfolio
- Conventional cleaning methods not feasible
- Design of disposable manufacturing options for 100% of upstream downstream unit operations
- Develop calibration philosophy for disposable instruments
- Deliver capability within 8months to support clinical trial program

11.55 - 12.25

One to One Meetings

- Downstream/Upstream Process Technology Platforms
- Specialised cell culture media
- Single-use & Disposable Technologies
- Smart Manufacturing Technologies - Technology Transfer
- Facility Management & Integration
- Capacity & Facility Design
- Multi product facilities
- Energy & Operational Efficiency
- Lean/Transformational Change - Operational Excellence
- Continuous Improvement / Manufacturing Excellence
- PAT & MES / Automation and Process Control Excellence
- QbD
- Quality Assurance & Quality Systems
- Regulation - Rapid Release Testing
- Finance / Inward & Foreign Investment
- cGMP - Contract, External Manufacturing Services
- Biogenerics/ Biobetters
- Personalised Medicines
- Cell & Gene Therapy
- Fill and finish
- Cold chain

12.25 - 12.55

Future trends perspectives and insights on biomachining

- Major market trends, market growth and new modalities
- Risk factors in biomachining
- Capacity planning: new approaches and technologies
- Process intensification
Downstream Processing

13.45 - 14.20
Overcoming mAb manufacturing process challenges for high concentration drug substance to facilitate subcutaneous administration
- UF/DF recovery flush strategy to enable high yields
- Targeting expiency concentrations in UF/DF processes
- UF/DF pressure limitations due to high viscosity
- Sterile filtration challenges at high protein concentrations
- Stability considerations at high concentration drug substance

14.25 - 15.00
Downstream development and scale-up challenges for high-titer cell culture processes
- Minimal in-process pool volume and load adjustment/preparation
- Robust impurity clearance and risk-based development considerations
- Manufacturing facility fit and process development considerations
- Scale-dependent challenges and model-assisted solutions

15.05 - 15.40
Evaluation of different continuous chromatography systems for continuous capture
- The leading tool for transition to continuous biomanufacturing
- Different continuous chromatography technologies are currently available in the market, which differ in configuration, control elements
- Each technology comes with different benefits and limitations, selection of one can be based on requirements and feasibility
- Comparison of different systems with feasibility data and operational aspects

Upstream Processing

13.45 - 14.20
Streamlining the Technical Operation Platform to Accelerate Biologics Development and Reduce Manufacturing Cost
- Improvement of technical platform including cell line, cell culture media, and purification framework
- Harmonization of core platform including cell culture, purification, and analytics
- Implementation of automated high-throughput operation
- Best practices in scaling and technology transfers

14.25 - 15.00
Novel Methods to Ensure pH Comparability Globally Independent of Scale and Outlook for Manufacturing
- Discuss pH as CPP and relevant parameter in scale up, SDM and process transfer
- Problem statement for sample based pH offline measurement
- Presentation of a novel method to ensure pH comparability globally independent of scale
- Discuss implementation into manufacturing and outlook

15.05 - 15.40
Development of An Intensified Manufacturing Process for Single-Use Clinical Manufacturing Facility
- New clinical manufacturing suite in Devens site has been built with the intention of implementing a hybrid continuous manufacturing model that can increase monoclonal antibody output
- In the upstream process, a perfusion process has been developed for the seed train to increase cell densities of fed-batch process, reduce cadence and enhance annual antibody output. The perfusion seed train implemented the use of capacitance probes to control perfusion rate and minimize media utilization
- Accompanying high density fed-batch process, a new platform media has been developed for basal and feed to enhance productivities
- A clone selection workflow has also been adapted to accommodate the transition to a high density fed-batch process from the previous fed-batch platform approach

16.30 - 17.00
A new generation of Agarose Beads
- Next generation resin for downstream processing
- Advanced resin technology for continuous and batch manufacturing
- Increased process productivity & economy
- Ultra-high capacities on Protein A resin above 80 g/l

17.00 - 17.30
Alluvial-filtration as effective method to remove cells and HCP’s
- Effective and robust single-use method
- Linear scalable from development to process
- Combined method to remove cells and HCP’s
- Replacing centrifuge and other technologies for midstream
- Step reduction for midstream applications

17.30 - 18.00
Integrated Microbial Process Development: Overcoming Developability Challenges
- Novel biopharmaceutical formats pose unique development challenges. Strategies for successful development need to holistically consider all aspects of biopharmaceutical processes such as expression strategies, novel unit operations, automated high-throughput process development, as well as scale-up and transfer from bench to large-scale manufacturing. We present our holistic approach based on a HTPD toolbox to leverage the complexity of manufacturing development for non-platform biotherapeutics. Integration of the whole process is also discussed

18.05 - 18.35
Open Panel Discussion:
Technical life-cycle management and post-market authorisation changes
- Technical Life-cycle management activities and ICH Q12, more upfront planning required
- Post-market authorization changes, flexible manufacturing networks, however maintaining complexity at a reasonable level
- Treatment access for larger population groups, Biosimilars, and Cost pressure on Biologic

18.35
CHAIRPERSON’S CLOSING REMARKS AND END OF DAY ONE

18.45
NETWORKING DRINKS RECEPTION
Project acceleration and breakthrough designation for biologics: Effect on early and late stage CMC development
- Strategies for streamlining CMC packages
- Minimising changes during development
- Front-loading versus fast to IND
- Accelerating/Compressing late stage development
- Effect of flexible plants, disposables and continuous processing

Current innovative bioprocess technologies
- Continuous integrated production of therapeutic proteins
- Design and optimization of perfusion bioreactors
- Continuous chromatography in capture and polishing
- Development of a supervisory control system for an integrated continuous biomanufacturing process

Implementation of Design Space Strategy to Control Product Quality during Large Scale Purification of Therapeutic Proteins
- Lot-to-lot resin variability – Case study
- Process control strategy
- Regulatory considerations

Challenges in developing a biosimilar monoclonal antibody
- To reach biosimilarity is a technical challenge
- Biosimilars stimulate innovation
- Biosimilars push for a decrease in costs
- Biosimilars push for an increase in quality

End-to-End Processing of Biopharmaceuticals – Options for scale-up and/or scale-out strategies
- End-to-end processing may embrace batch, continuous or hybrid technologies
- Single-use technologies enable proven scale-up and then scale-out
- Significant productivity improvements may be achieved through effective process design
- Using a toolbox approach to develop and scale-up a process enables productivity improvements across a broad range of advanced biologics modalities

Chromassette®: A stackable chromatography cassette enabling next-generation bioprocessing
- A stackable, single-use and pre-packed chromatography cassette with a supported bed (Chromassette®) is a novel product concept in DSP, addressing the current key challenges in manufacturing
- Chromassette combines the separation capabilities of chromatography resins with the convenience of a pre-packed, modular cassette as shown in a range of application examples

A Robust and Stable Molecularly Imprinted Polymers for Bioprocessing
- Molecularly imprinted polymers (MIPS) have broad application as affinity reagents in sensing, diagnostics, analysis and separation
- MIPS are synthetic alternatives to antibodies – they are robust and stable and can operate in extreme physicochemical conditions
- Viable alternative for purification of biotherapeutics with potential for extensive reuse
- With significantly lower production costs, our initial testing indicates the potential to transform the antibody purification process
- We are developing a MIP alternative to Protein A, available for licensing from 2019
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.05 - 13.40</td>
<td>Process Development
Biosimilars
Using SPOT™ Technology in our CHOBC® Platform and our USP Modulation toolbox to reduce cost of goods for Biosimilar Development

Process development and manufacturing of Antibody Drug Conjugates
• Process development and challenges for different ADC platforms
• Strategies for ADC manufacturing
• Control of product heterogeneity
• Improvement for future processes</td>
<td>
Biosimilars – Differentiation as a success factor
• Regulators Perspective
• Biosimilar Landscape
• Differentiators for success: Manufacturing considerations Technical Development Considerations Interchangeability Portfolio Selection

Implementation and validation of a single-use mixing system for virus inactivation with solvent / detergent
• Virus inactivation by solvent Detergent treatment
• Single Use System
• Scale-down model for S/D Virus inactivation
• Steps of the validation (temperature mapping; Homogeneity study; ...)
• Impact of the EU Reach regulatory authority on S/D IV processes

Digitising the entire Validation Life Cycle: a productivity leap
• Traditional paper/hybrid manual validation processes are not efficient, not cost effective, not scalable and with high risks
• Digital and paperless has become a strategic focus, driven by data integrity concerns and compliance risks
• > 60% of global Pharma/ Biotech companies are actively looking to digitize the entire Validation Lifecycle
• Learn first-hand experienced how a leading global Biotech considered, evaluated, implemented and scaled its eVal solution across its entire organisation
• With detailed results, ROI and considerable cost & productivity savings
Next generation manufacturing for expanding portfolio of biologics
• Hybrid Model
• Modular and single-use technologies
• Flexible fed-batch cell culture
• High-performance purification
• Single pass TFF (SPTFF)

Open Panel Discussion:
With next gen manufacturing technologies and processes and strategies emerging what gains are being realised for profitability, productivity and quality in future facilities?
• Assessing the benefits and drawbacks of the latest manufacturing technology trends
• How Single-use equipment can help achieve performance improvements, both for downstream purification and for manufacturing productivity overall
• Process and Product Considerations for Flexible Manufacturing
• How Process Technology Platforms can be used to Optimize areas and parameters in upstream processing and automation opportunities to improve productivity and quality
• Process intensification strategies in USP and DSP shortening process time</td>
</tr>
</tbody>
</table>